Combination Sum
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set
A solution set is:
2,3,6,7
and target 7
,A solution set is:
[7]
[2, 2, 3]
public class Solution { public ArrayList<ArrayList<Integer>> combinationSum(int[] candidates, int target) { // Start typing your Java solution below // DO NOT write main() function Arrays.sort(candidates); ArrayList<ArrayList<Integer>> prev = new ArrayList<ArrayList<Integer>>(); prev.add(new ArrayList<Integer>()); return combinationSum(candidates,target,0,prev); } public ArrayList<ArrayList<Integer>> combinationSum(int[] candidates, int target, int i, ArrayList<ArrayList<Integer>> prev){ ArrayList<ArrayList<Integer>> res = new ArrayList<ArrayList<Integer>>(); if(target==0){ for(ArrayList<Integer> temp:prev){ ArrayList<Integer> temp1 = new ArrayList<Integer>(temp); res.add(temp1); } return res; } for(int j=i;j<candidates.length;j++){ if(candidates[j]>target) break; for(ArrayList<Integer> temp:prev) temp.add(candidates[j]); ArrayList<ArrayList<Integer>> next = combinationSum(candidates,target-candidates[j],j,prev); if(next.size()>0) res.addAll(next); for(ArrayList<Integer> temp:prev) temp.remove(temp.size()-1); } return res; } }
class Solution { public: vector<vector<int> > combinationSum(vector<int> &candidates, int target) { // IMPORTANT: Please reset any member data you declared, as // the same Solution instance will be reused for each test case. sort(candidates.begin(), candidates.end()); vector<vector<int>> output; vector<vector<int>> buffer = vector<vector<int>> (1, vector<int>()); combinationSum(candidates, output, target, buffer, 0); return output; } void combinationSum(const vector<int> &candidates, vector<vector<int>> &output, int target, vector<vector<int>> &buffer, int index) { if (target == 0) { for (auto temp : buffer) { output.push_back(temp); } } else { for (int i = index; i < candidates.size(); ++i) { if ((i == index || candidates[i] != candidates[i-1]) && candidates[i] <= target) { for (int j = 0; j < buffer.size(); ++j) { buffer[j].push_back(candidates[i]); } combinationSum(candidates, output, target - candidates[i], buffer, i); for (int j = 0; j < buffer.size(); ++j) { buffer[j].pop_back(); } } } } } };
No comments:
Post a Comment