Minimum Window Substring
Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).
For example,
S = "ADOBECODEBANC"
T = "ABC"
Minimum window is "BANC"
.
Note:
If there is no such window in S that covers all characters in T, return the emtpy string ""
.
If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in S.
import java.util.HashMap;
import java.util.Map;
public class Solution {
public String minWindow(String S, String T) {
// Start typing your Java solution below
// DO NOT write main() function
if(S==null || T==null) return "";
Map<Character,Integer> total = new HashMap<Character,Integer>();
for(int i=0;i<T.length();i++){
char c = T.charAt(i);
if(total.containsKey(c))
total.put(c,total.get(c)+1);
else
total.put(c,1);
}
Map<Character,Integer> covered = new HashMap<Character,Integer>();
int start=0,
end=-1,
cur1=0,
cur2=0,
count=0;
while(cur1<S.length() && cur2<S.length()){
while(cur1<S.length() && !total.containsKey(S.charAt(cur1)))
cur1++;
if(cur1<S.length()){
if(cur2<cur1) cur2=cur1;
if(count<T.length()){
while(cur2<S.length() && !total.containsKey(S.charAt(cur2)))
cur2++;
if(cur2<S.length()){
char c = S.charAt(cur2);
if(!covered.containsKey(c) ){
covered.put(c,1);
count++;
}else{
if(covered.get(c)<total.get(c))
count++;
covered.put(c,covered.get(c)+1);
}
if(count<T.length()) cur2++;
}
}else{
if(start>end || end-start>cur2-cur1){
end=cur2;
start=cur1;
}
char c = S.charAt(cur1);
covered.put(c,covered.get(c)-1);
cur1++;
if(covered.get(c)<total.get(c)){
count--;
cur2++;
}
}
}
}
return S.substring(start,end+1);
}
}
2 comments:
Is this an O(N) solution?
yes, this is an O(n) solution.
Post a Comment